
M A K I N G R O P
B E T T E R W I T H C P U

E M U L A T I O N A N D
R E A L T I M E A N A L Y S I S

D Y L A N K N O F F (E L B E E _ E Z @ P R O T O N M A I L . C O M)

H T T P S : / / F A U L T P O I N T . C O M / P O S T / 2 0 2 4 - 0 6 - 0 2 - B I N J A - P L U G I N - R O P V I E W /

D I S T R I C T C O N Y E A R Z E R O

mailto:elbee_ez@protonmail.com
https://faultpoint.com/post/2024-06-02-binja-plugin-ropview/

Agenda

What is ROPView?

Components

Unicorn Engine

Gadget Emulation and Analysis

Data Analysis and Semantic Search

Demos

Pitfalls

Who am I

bhartee.ai

Junior at GMU (CompSci)

Experience with RE/VR in embedded devices
(but interested in other areas of RE)

Mason Competitive Cyber, U.S. Cyber Team
(previously), CTF player, Co-founder @
bhartee.ai

Interested in emulation, automating
weaponization, and tooling

https://www.bhartee.ai/

Introducing ROPView
Plugin for BinaryNinja, featureful Gadget
Searcher/Analyzer

Per-instruction effect analysis (backed by Unicorn)

Dataframe aggregation for pandas-based search
queries

Caching, usual options, search presets, analysis
prestates

armv7, thumb2, aarch64, mipsel32+64, mips32+64,
i386, and amd64 (extendable constants)

Presets

Prestates (/w Corefile support!)

Components

Discovery
Gadget discovery

handled in-house using
Binja API (cached)

Analyzer
Handled via Unicorn

emulations and hooks
(cached)

Aggregator
Handled via pandas,

sorted by attributes and
by register effects (uses

Analysis States)

Renderer
Handles gadget

repooling events and
cache coherency

Components

Discovery
Gadget discovery

handled in-house using
Binja API (cached)

Analyzer
Handled via Unicorn

emulations and hooks
(cached)

Aggregator
Handled via pandas,

sorted by attributes and
by register effects (uses

Analysis States)

Renderer
Handles gadget

repooling events and
cache coherency

Coolest!

• Deterministic and
self-resolving

• Lightweight, even
with analysis steps
+ hooks!

Drawbacks

• Lightweight and contextless CPU emulation
framework backed by Qemu

• Easy to use (mapping, write/read, register access) (+
python bindings)

• Lots of (mostly implemented) hooks including:
• Before a insn is executed
• When a memory violation occurs

Unicorn Engine

• Hooks slow emulation
• Space-complex due to mass instancing (especially

during semantic searches)https://www.unicorn-engine.org

Analyzer
• Emulates and caches effects of selected item.

• The issue: Gadget emulations should be small, but
context is large

• Resolver/Analysis Steps

• Analysis hooks

• Hook executes in-between fetch and
execute and diffs clobbered
registers/memory (populates Analysis
pane + Dataframe columns).

• CPU Exception Hooks

• Hook exceptions to correct emu as needed
and track errors. (ie unmapped memory is
fetched and marked executable only when
an access violation occurs).

Gadget Emulation Framework
mov [r14], r15; ret;
r14==0x600df0, r15=0x1234

Gadget Emulation Framework
mov [r14], r15; ret;
r14==0x600df0, r15=0x1234

Resolver Queue:
Empty

Gadget Emulation Framework
mov [r14], r15; ret;
r14==0x600df0, r15=0x1234

Resolver Queue:
Empty

GA_UNMAPPED_WRITE (0x600df0)

Gadget Emulation Framework
mov [r14], r15; ret;
r14==0x600df0, r15=0x1234

Resolver Queue:
Empty

GA_UNMAPPED_WRITE (0x600df0)

Resolver Queue:
(0x600df0)

Gadget Emulation Framework
mov [r14], r15; ret;
r14==0x600df0, r15=0x1234

Resolver Queue:
Empty

map_and_write(0x600000,0x1000)

Gadget Emulation Framework
mov [r14], r15; ret;
r14==0x600df0, r15=0x1234

Resolver Queue:
Empty

map_and_write(0x600000,0x1000)

Cache(state)

Data Analysis
Dataframe objects includes:
• Addr (int) – Address literal
• Loc (str) – Address as hex string
• Bytes (str) – Raw asm
• Inst_cnt (int) – Instruction count
• Disasm (str) – Gadget disassembly
• Registers (int[]) – Register values (analysis-based)
• Presets

All objects can be queried with the respective
pandas functions available for that object.

https://pandas.pydata.org/docs/reference/api/pandas.Series.str.html

SemanticSearch

Search

DataFrame

• Contains critical registers

• Dumb sort (by pop)

Populate

Analysis

• Based on depth parameter

• Populate Analysis cache

• New + cached analysis saved to Search DF

Query

Search DF

• Translate original query

• Query search DF

Usage

All bytes except the 2 MSB must be in ASCII range + extra constraints

https://faultpoint.com/assets/ropview_demos/ascii.gif

https://faultpoint.com/assets/ropview_demos/ascii.gif

sleep_a0 -> (a0 > 0 and a0 < 600)

https://faultpoint.com/assets/ropview_demos/sleepa0.gif

https://faultpoint.com/assets/ropview_demos/sleepa0.gif

Pop-pop-ret, control r13, avoid pivots, constrain range

https://faultpoint.com/assets/ropview_demos/constraints.gif

https://faultpoint.com/assets/ropview_demos/constraints.gif

execve -> (rax==0x3b or rdi==CONTROL or rdx==0 or … or sys)

https://faultpoint.com/assets/ropview_demos/execve.gif

https://faultpoint.com/assets/ropview_demos/execve.gif

Pitfalls
Tuning SemanticSearch parameters SemanticMatches?

SemanticDepth

When do we give up?

Stack accuracy Emulated stack uses cyclic
data, lacks actual stack
context

Limited by dependencies Emulation issues /w unicorn
possible

https://github.com/elbee-cyber/RopView/issues

Version 2 released!
https://github.com/elbee-cyber/RopView

https://github.com/elbee-cyber/RopView

Questions?

	Slide 1: Making ROP Better with CPU Emulation and Realtime Analysis
	Slide 2
	Slide 3: Who am I
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

