
Intro to
Vulnerability
Research
https://github.com/elbee-

cyber

https://github.com/elbee-cyber
https://github.com/elbee-cyber
https://github.com/elbee-cyber

What is vulnerability research?

• The act of finding zero-days, not necessarily exploiting them (exploit development)

• One of the most important aspects is choosing a target

o A target should be specific software, hardware, or protocols not tied to a specific environment.

o Examples: Router firmware, the Linux kernel, an NFC stack, FOSS, WordPress

• Factors that can help you choose a good target

o Does it satisfy the above?

o How complex is it?

o How familiar are you with the technologies you might encounter?

o What types of bug classes could exist?

o How easy is it to acquire?

o How easy is it to debug?

o Who is the vendor?

• https://nostarch.com/zero-day

https://nostarch.com/zero-day
https://nostarch.com/zero-day
https://nostarch.com/zero-day
https://nostarch.com/zero-day

Always practice responsible disclosure!!
(90 days)

Attack
Surfaces and
Data-flows

Data-flows: How you get from a source to a sink.

How do we reach the interesting code?

• Reaching a SQL query statement on WP is easy, but...

• How can I send a custom BT packet that hits a sink?

• Complex state machines

• Driver restrictions on the protocol (likely requires external hardware)

Harder on complex targets

Mapping the data-flows in an attack surface will help!

• Create a harness that speaks the target specs

• Confirm you can send/recv information

• This is a whole process on its own!

For the BT example, if my target is SDP:

Analysis
with source

Codeql and semgrep

• Source to sink and sink to source (both being lines of

code).

• Finds flows from sources to sinks

o "Tainted" variables are also included

• The goal

o Attacker-controlled source categories

o Interesting sink categories

• Granularity of source

Taint Analysis

Taint Analysis
Workflow

• Source to sink will follow uninteresting vars (path explosion), do sink

to source instead!

• Note attacker-controlled sources and interesting sinks.

• Filter out uninteresting patterns/results as you go.

• Use this analysis to find data-flows and vulnerable patterns.

Patch Diffing and
Variant Analysis
• Searching for weak code patterns based on patch

history

• Patch diffing lets you learn about a patch

o Which contributor is responsible

o A possible source and sink pattern

▪ Source: Non-zero variable with later attacker-
controlled arithmetic

▪ Sink: allocs, memcpys, etc

o What structures it interacts with and at what
layer

o Maybe highlights where they don't follow specs

• Variant analysis is creating heuristics and searching
for a pattern

• Why: Code reuse = bug reuse, human habits

CVE-2022-20410

"Bypass length check due to integer overflow,
leading to heap buffer overflow read"

Discovered with this CodeQL query

https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-
bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496

https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496

Binary
Analysis

Binary Analysis

• No source!

• Look at binary without running it AND

look at a program while it runs.

• Sometimes stuff just doesn't work:

o A module that expects other

firmware components

o An obscure or different instruction

set architecture

o Modules that rely on drivers

or hardware

• In these scenarios, emulation can be a

part of your debug environment!

o Router httpd binary -> Qemu

o Windows driver ioctl -> Qiling

o Decryption function from firmware

blob -> Unicorn

• Other techniques for specific
scenarios

o Symbolic execution: Constraint-

based execution with symbolic

inputs to explore paths.

Fuzzing

Throwing hundreds, thousands, millions, of mutated inputs at a target, with an emphasis
on the feedback method that "guides" input generation.

Fuzzer go brrr
Coverage-guided: "Future mutations are
guided by code coverage from previous
inputs."

o Basically generation heuristic based on new
lines hit.

o Combining this with a grammar can be very
powerful!

• Very effective because it reaches deep
code and is based on "new behavior".

• AFL++

o Instrumented, coverage-guided, mutation
fuzzer

o Has lots of forks and built-in modes!

o LibAFL, build your own!

• Can be combined with sanitizers

o Trigger because of a thing

o Abort and print debug info about that thing

• https://aflplus.plus/libafl-book

• Design your own fuzzers with custom
techniques!

• Can easily be a whole class on its own!

https://www.sidechannel.blog/en/afl-and-an-introduction-to-feedback-based-fuzzing

https://aflplus.plus/libafl-book
https://aflplus.plus/libafl-book
https://aflplus.plus/libafl-book
https://aflplus.plus/libafl-book
https://www.sidechannel.blog/en/afl-and-an-introduction-to-feedback-based-fuzzing
https://www.sidechannel.blog/en/afl-and-an-introduction-to-feedback-based-fuzzing
https://www.sidechannel.blog/en/afl-and-an-introduction-to-feedback-based-fuzzing
https://www.sidechannel.blog/en/afl-and-an-introduction-to-feedback-based-fuzzing
https://www.sidechannel.blog/en/afl-and-an-introduction-to-feedback-based-fuzzing
https://www.sidechannel.blog/en/afl-and-an-introduction-to-feedback-based-fuzzing
https://www.sidechannel.blog/en/afl-and-an-introduction-to-feedback-based-fuzzing
https://www.sidechannel.blog/en/afl-and-an-introduction-to-feedback-based-fuzzing
https://www.sidechannel.blog/en/afl-and-an-introduction-to-feedback-based-fuzzing
https://www.sidechannel.blog/en/afl-and-an-introduction-to-feedback-based-fuzzing
https://www.sidechannel.blog/en/afl-and-an-introduction-to-feedback-based-fuzzing
https://www.sidechannel.blog/en/afl-and-an-introduction-to-feedback-based-fuzzing
https://www.sidechannel.blog/en/afl-and-an-introduction-to-feedback-based-fuzzing
https://www.sidechannel.blog/en/afl-and-an-introduction-to-feedback-based-fuzzing
https://www.sidechannel.blog/en/afl-and-an-introduction-to-feedback-based-fuzzing

Questions?

	Slide 1: Intro to Vulnerability Research
	Slide 2: What is vulnerability research? 🎯
	Slide 3: Always practice responsible disclosure!! (90 days)
	Slide 4: Attack Surfaces and Data-flows 🕸️
	Slide 5
	Slide 6: Analysis with source
	Slide 7: Taint Analysis 🔗
	Slide 8: Taint Analysis Workflow
	Slide 9: Patch Diffing and Variant Analysis ♻️
	Slide 10: Binary Analysis
	Slide 11: Binary Analysis 🧩
	Slide 12: Fuzzing
	Slide 13: Fuzzer go brrr 💥
	Slide 14: Questions?

