diff --git a/net/vmw_vsock/af_vsock.c b/net/vmw_vsock/af_vsock.c
index 4bd825fa77e41l1..8ecl28f450dfcT 100644

-== afnet/vmw_vsock/af_vsock.c

+++ bfnet/vmw_vsock/af_vsock.c

void vsock remove sock(struct vsock _sock *vsk)

In'h"O 1'0 + ! vsock. remove. bound (vsk
VUI"e r'abil i-ry } vsock_remove_connected(vsk) ;

EXPORT_SYMBOL_GPL (vsock_remove_sock) ;

Research

]

lock_sock_nested(sk, level);
https://github.com/elbee- i -ock orohan(s}
cyber +

if (vsk->tra nc._r:.nr'l-"l
vsk->transport->release(vsk);

else if (sock_type_connectible(sk->sk_type))
vsock_remove_sock(vsk);

sk—>sk_shutdown = SHUTDOWN_MASK;

skb_queue_purge(&sk->sk_receive_gueue);

https://github.com/elbee-cyber
https://github.com/elbee-cyber
https://github.com/elbee-cyber

What is vulnerability research? ©

« The act of finding zero-days, not necessarily exploiting them (exploit development)

* One of the most important aspects is choosing a target
o A target should be specific software, hardware, or protocols not tied to a specific environment.
o Examples: Router firmware, the Linux kernel, an NFC stack, FOSS, WordPress

 Factors that can help you choose a good target
o Does it satisfy the above?
o How complex is it?
o How familiar are you with the technologies you might encounter?
o What types of bug classes could exist?
o How easy is it to acquire?
o How easy is it to debug?
o Who is the vendor?

« https://nostarch.com/zero-day

https://nostarch.com/zero-day
https://nostarch.com/zero-day
https://nostarch.com/zero-day
https://nostarch.com/zero-day

Always practice responsible disclosure!!
(90 days)

shutterstock.com + 737013850

Attack

Surfaces and
Data-flows ¢

Harder on complex targets

® * Reaching a SQL query statement on WP is easy, but...

readloop * How can I send a custom BT packet that hits a sink?
® * Complex state machines

* Driver restrictions on the protocol (likely requires external hardware)
handle_http/ request

mmm Mapping the data-flows in an attack surface will help!
handle; http_v1

mmm For the BT example, if my target is SDP:

handle _http’ v1_get handle_http v1_head
. . * Create a harness that speaks the target specs

+ Confirm you can send/recv information

* This is a whole process on its own!
parse_date_string

#

(m)
5

libc.so.6 X

Symbc Q =

__builtin_wm
__builtin_wc
__builtin_st
__builtin_st
__builtin_me
__builtin_me
_rtld_global
_rtld_global
_dl_signal_e
_dl_signal_e
_dl_rtld_di_
_dl_find_dso
_dl_fatal_pr
_dl_dealloca
_d1l_catch_ex
_d1l_audit_sy
_d1l_audit_pr
_dl_argv
_dl_allocate
_dl_allocate
__tunable_is
__tunable_ge
__tls_get_ad
__rseq_size
__rseq_offse
__libc_stack
__libc_enabl
malloc
optarg
argp_program

Cross Refe =
» Filt

+

ELF v Linearv High Level ILv¥

uint64_t __libc_system(int64_t argl)

B845cB7a
B845cB7a
86845c@81
B845cBba
B845cBca
B845cBca
B8845c885
B80845c885
86845c885
B845cB8e
B@45caf7
B845caf7
B845c@9e
B845cBas5
B845cBas
BB45cefe
B@45cafe

8845c83a
8845cBab

data_612584 -= 1
if (templ == 1)

__sigaction(3,

int32_t tempB

data_612588 = @

if (tempB s> 1)

__111_lock_wake_private(&data_612580)

if (rbx == *(fsbase + Bx28))
return rbx - *(fsbase + 8x28)

__stack_chk_fail()
noreturn

66 8f 1f 44 86 ee
66 2e

8845c08a8 Of 1f 84 60 00 80 60 60

08845ced1
8845cBeb

af 1f 86 06 680 66 ee

66 2e

8845cBe8 Of 1f 84 60 00 B0 60 60

8845c183

66 66 2e Of 1T

8845c168 84 60 60 66 60 8e 66 90

8845c117
8845¢c119
8845c119
8845¢c132
8845¢c132
B8845c13c

Log Q Searchlog

if (arg1 != @)

return sub_45bc98()

int32_t rax_1

*argl, nullptr)
__sigaction(2, arg1[1], nullptr)

data_6125880

uint64_t IITEBCHSYSEen(int64_t argl)

rax_1.b = sub_45bc98() ==
return zx.q(rax_1.b)

[ARIADNE] Starting analysis for "libc.so"...

[ARIADNE] Function analysis (4 threads) took 94.99 seconds
[ARIADNE] Generating callgraph took 8.52 seconds

[ARIADNE] Graph analysis took 9.98 seconds

[ARIADNE] To see the interactive graph, open the following url in a browser :E

[ARIADNE] http://127.8.8.1:8860

[ARIADNE] Analysis for "libc.so" complete in 185.76 seconds

__tailcall

[ARIADNE] Serving source/sink for _start -> __libc_system (2 nodes, @ edges

Websocket Connected

sub 49eb10

sub_42a700 rite

METADATA SIDEBAR [-]

__write

Name

args

return_type

bloc

instruc

complexity
num_descendants
descendent_complexity
callers

local_callees

imported_callees

Value
int32_t arg1, int64_t
int64_t

1

12

1

45

187 GRAPH FOCUS FUNCTION HIDE IMPC
_lO_file_write, _:
TOGGLE COVERAGE

REMOVE NODE+DESCENDENTS

sub_49eb10

Analysis
with source

Codeqgl and semgrep

Taint Analysis

Source to sink and sink to source (both being lines of
code).

Source

Finds flows from sources to sinks [tm-,o{z gewrmemwﬂ

o "Tainted" variables are also included i/

The goal
sold = getsta‘t(item__id);

o Attacker-controlled source categories

o Interesting sink categories)L

Granularity of source 1 ¥

[Query(item_,}cl) j [Querc/(sdo()]

Sinks

Sink

l«o(r,__alloc(pkt-)oﬁt*-pkt-)size.)

1 IR

from_stream(pkt->emd) from_stream(pkt->erc) j[FfOM,_StYCQM(Pkt")O‘F‘F)

Sources

T : .'. A l S « Source to sink will follow uninteresting vars (path explosion), do sink
al n na YS l S to source instead!
Worlkfl ow * Note attacker-controlled sources and interesting sinks.

 Filter out uninteresting patterns/results as you go.

* Use this analysis to find data-flows and vulnerable patterns.

Patch Diffing and
Variant Analysus &

* Searching for weak code patterns based on patch
history
* Patch diffing lets you learn about a patch
o Which contributor is responsible
o A possible source and sink pattern

= Source: Non-zero variable with later attacker-
controlled arithmetic

= Sink: allocs, memcpys, etc

o What structures it interacts with and at what
layer

o Maybe highlights where they don't follow specs

« Variant analysis is creating heuristics and searching
for a pattern

* Why: Code reuse = bug reuse, human habits

CVE-2022-20410

uintls_t min_len = @;

min_len += B;

/f "p_attrs[i].name.str_len" can take any value form @ to UINT16_MAX
BE_STREAM_TO_UINT16(attr_entry->»name.str_len, p);

f/f possible integer overflow, "min_len" may less than expected

min_len += attr_entry->name.str_len;

// bypass this length check

if (pkt_len < min_len) goto browse_length_error;

attr_entry->name.p_str = (uint8_t*) osi_malloc(attr_entry->name.str_len * sizeof(uint8_t));
// oob read due to "attr_entry-:name.str_len" could be larger than real size of input data
BE_STREAM_TO_ARRAY(p, attr_entry->name.p_str, attr_entry->name.str_len);

"Bypass length check due to integer overflow,
leading to heap buffer overflow read"

// CodeQL code
override predicate isSink({DataFlow::Node sink) {
exists(AssignAddExpr aae |
aae.getRValue() = sink.asExpr() and
aae.getlValue().getType().getSize() <=
aae.getRValue().getExplicitlyConverted().getType().getSize()
) or
exists(AddExpr ae |
) or
exists(MulExpr me |
) or
fd o,

}

Discovered with this CodeQL query

https://www blackhat.com/eu-22/briefings/schedule/#deep-into-android-
bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patierns-28496

https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496
https://www.blackhat.com/eu-22/briefings/schedule/#deep-into-android-bluetooth-bug-hunting-new-attack-surfaces-and-weak-code-patterns-28496

10101010
10101010

Binary
Analysis

bdwgc.bndb X

struct MonoJitInfoTable* mono_jit_info_table_find_internal(struct MonoDomain*

18606T48F
188067491

188061497
180061499

18806T49e
188086 4a1

18886T4a3
18006T4a8
180086f4ab

18606f4ad
18e06T4b2
18006T4b9
180086f4bc

18606f4be
18e06T4c3
18006T4ch
180064c9
18006T4d8
18606f4d5
18606T4d8
18e06f4db
18006 4de
18006T4e3
18606T4e6

186086T4e8
18006T4eb
18e06T4ee
1888641

test
jne

xor

esi, esi
Bx180886T524

eax, eax {@x@
6x180067524

rl4d, ri4d
Bx180861521

mono_get_root_domain
rax, rax

Bx180061521

mono_get_root_domain

& bdwgc.bndb - Binary Ninja

PE~ Linear~

18086469
1880646
188e6f46f
180061476
18006f46f
188067480
18806488
188e6f4al
18806f4a1
18006f4ab
18e06f4ab
18806f4ab
180086f4ab
18806f4bc
18806T4bc

rcx, qword [rax+@x158 {MonoDomain::aot_m 18886f4bc

rex, rex
Bx180861521

mono_get_root_domain
r8d, r8d axe

rdx, rdi

rex, [rax+8x158]
mono_get_hazardous_pointer
r8, rbp

rdx, rdi

rcx, rax
jit_info_table_find

rax, rax

Bx18806T4fa

188086f4bc
18006f4de
18806 T4e6
18806T4e6
1888647
18006T4e6
18006f4fd
18806f4fd
188061584
188e6f4fd
18806f50e
18006f50e
18006 50e
188061508
188861517

rdx, gword [rax {MonoJitInfo::d}] 18886517

r8, rbp
rcx, ris

188061517
188861517

gword [rel jit_info_find_in_aot_func] [* 18806f51b
»

Binary Analysis

hazard_ptr->hazard_pointers[@] = @;

& 8=

struct MonoJitInfoTable* mono_jit_info_table_find_internal(struct MonoDomain

struct MonoJitInfoTable* jit_table_aot = jit_table;
if (hazard_ptr != 8)

if (jit_table == @)

if (try_aot != 8)

if (mono_get_root_domain() == @)

goto reset_table;

if (mono_get_root_domain()->aot_modules == @)

goto reset_tab

struct MonoJitInfo* table = jit_info_table_find(mono_
if (table != 8)

jit_table_aot = jit_info_find_in_aot_func(domain
(hazard_ptr != 8)
hazard_ptr->hazard_pointers[@] = 8;
(jit_table_aot == 8)

goto reset_table;

((jit_table_aot->is_trampoline & @x18860888) == 8)
goto reset_table;

(allow_tramp != @)

windows-x86_64 0x18006f4bc-0x18006f4be (0x2 bytes|

No source!

Look at binary without running it AND
look at a program while it runs.
Sometimes stuff just doesn't work:

o A module that expects other
firmware components

o Anobscure or different instruction
set architecture

o Modules that rely on drivers
or hardware

In these scenarios, emulation can be a
part of your debug environment!

o Router httpd binary -> Qemu
o Windows driver ioctl -> Qiling
o Decryption function from firmware

blob -> Unicorn

Other techniques for specific
scenarios

o Symbolic execution: Constraint-
based execution with symbolic
inputs to explore paths.

Fuzzing

Throwing hundreds, thousands, millions, of mutated inputs at a target, with an emphasis
on the feedback method that "guides"” input generation.

Fuzzer go brrr 3

Coverage-guided: "Future mutations are
guided by code coverage from previous
inputs.”
o Basically generation heuristic based on new
lines hit.

Initial
Corpus

/‘——_»

o Combining this with a grammar can be very
powerful!

« Very effective because it reaches deep

code and is based on "new behavior". T nitwith:datien =
e AFL++ L AFL++ . t(Fuzzing Target 1
o Instrumented, coverage-guided, mutation Inputinserted in the:quevie
fuzzer Discarded input i ! .
o Has lots of forks and built-in modes! L’:,f‘fo"\}zﬁ:’;e e doation
o LibAFL, build your own! Saved input e v

« Can be combined with sanitizers
o Trigger because of athing
o Abort and print debug info about that thing e

» https://aflplus.plus/libafl-book

+ Design your own fuzzers with custom
techniques!

* Can easily be a whole class on its own!

https://aflplus.plus/libafl-book
https://aflplus.plus/libafl-book
https://aflplus.plus/libafl-book
https://aflplus.plus/libafl-book
https://www.sidechannel.blog/en/afl-and-an-introduction-to-feedback-based-fuzzing
https://www.sidechannel.blog/en/afl-and-an-introduction-to-feedback-based-fuzzing
https://www.sidechannel.blog/en/afl-and-an-introduction-to-feedback-based-fuzzing
https://www.sidechannel.blog/en/afl-and-an-introduction-to-feedback-based-fuzzing
https://www.sidechannel.blog/en/afl-and-an-introduction-to-feedback-based-fuzzing
https://www.sidechannel.blog/en/afl-and-an-introduction-to-feedback-based-fuzzing
https://www.sidechannel.blog/en/afl-and-an-introduction-to-feedback-based-fuzzing
https://www.sidechannel.blog/en/afl-and-an-introduction-to-feedback-based-fuzzing
https://www.sidechannel.blog/en/afl-and-an-introduction-to-feedback-based-fuzzing
https://www.sidechannel.blog/en/afl-and-an-introduction-to-feedback-based-fuzzing
https://www.sidechannel.blog/en/afl-and-an-introduction-to-feedback-based-fuzzing
https://www.sidechannel.blog/en/afl-and-an-introduction-to-feedback-based-fuzzing
https://www.sidechannel.blog/en/afl-and-an-introduction-to-feedback-based-fuzzing
https://www.sidechannel.blog/en/afl-and-an-introduction-to-feedback-based-fuzzing
https://www.sidechannel.blog/en/afl-and-an-introduction-to-feedback-based-fuzzing

Questions?

W/ '

y

~

HHUH

i

	Slide 1: Intro to Vulnerability Research
	Slide 2: What is vulnerability research? 🎯
	Slide 3: Always practice responsible disclosure!! (90 days)
	Slide 4: Attack Surfaces and Data-flows 🕸️
	Slide 5
	Slide 6: Analysis with source
	Slide 7: Taint Analysis 🔗
	Slide 8: Taint Analysis Workflow
	Slide 9: Patch Diffing and Variant Analysis ♻️
	Slide 10: Binary Analysis
	Slide 11: Binary Analysis 🧩
	Slide 12: Fuzzing
	Slide 13: Fuzzer go brrr 💥
	Slide 14: Questions?

