[eol X0 + qry] 13q byowp xbx vorm <SEL+bso1> PLOYTS8YTTTTTx
X569 <REL+bso1> dCOY28YTTTTVx

 [xb1]:2% 13q byowb eli| <IpI+bso1> bCOV28YTTTTVx

| MMI+bso1> 060T28TITT1T)

= ] : > “« gen

Heap Exploitation
A Brief Introduction

elbee

/4



e The heap

] L s IIII.[{ l{ ress58s

Glibc is derived from pthreads malloc (ptmalloc) O

[...]
malloc(size) - Returns a pointer to the newly l e (" Manarena | Arena
allocated chunk on the heap. |
free(ptr) - Frees a chunk from allocation and L f Conten) ),
returns it to the heap manager for future l-*v-ﬂ-*ﬂm’ REGION [{ | Cswbhew ) )
allocation. ] \., subheap ) | Arenan

LIBRARIES

Different threads have different heaps and their | -]

own arenas. We’re mostly dealing with the main T STACK

arena. Arenas store heap metadata used by | -

malloc and free to service requests. (e.g. Heads of | [..]

free lists, maximum serviceable request size, etc) o aret s comhesn cxpltaton port Lunderstonding

The main arena is located in the libc section. egbehespmplemeniaton /////



® Chunk anatomy

Chunks are sized to the nearest 8-byte aligned serviceable size. Heap chunks have
metadata in them used by malloc and free when servicing future requests. Freeing a
chunk does not delete it, it just modifies the chunk to prepare it for future allocation in
the event it meets a request.

A = Chunk is not
Empty qword EMH in the main heap &
was allocated.

M = Chunk was
mmapped and will be
User data treated directly.

P = The previous
chunk is not free.

/4



® Freed chunk anatomy

Freebins are linked lists of freed chunks. Depending on the chunk, it will be stored in its
corresponding list: the tcache, fastbins or unsortedbin (where the chunk is further sorted
into the smallbin or largebin by malloc). If a chunk is not a fast or tcache chunk and an
adjacent chunk is also free (prev_inuse) the chunks may be consolidated, this is also true
with the top chunk. The head of a bin is stored in the arena and linked members are
stored inline in the freed chunk in its first two qwords of user data.

A = Chunk is not
was allocated.

= Chunk was
mmapped and will be
treated directly.
User data P = The previous

chunk is not free. /4222?/




Main arena
fast[0x20] head

ua

(libc)
Cheap)
User data
Ox2a
T 00
Cheap)

User data

/4



Demo

Materials can be found at
https://faultpoint.com/assets/filebin/malloc_demo.c

https://faultpoint.com/assets/filebin/malloc demo
https://faultpoint.com/assets/filebin/template.py

/4


https://faultpoint.com/assets/filebin/malloc_demo.c
https://faultpoint.com/assets/filebin/malloc_demo
https://faultpoint.com/assets/filebin/template.py

® Fastbins

The fastbins are a singly linked freelist that stores chunks of sizes 0x20 to 0xb0. It is singly linked so only
the first qword of user data is utilized as an fd. Malloc has a fast size integrity check when allocating from
these bins (more on glibc exploit mitigations later). Chunks that are fast-sized will be putinto the
corresponding fastbin depending on if the tcache is disabled or the corresponding tcache entry is full.

0x555555559260 0(x0000000000000G00 IXOOROEOOOOAOBOBEO e e
Px555555559270 praclelelelclelolelolelolalelofale] IXxEOOEAOAOOOAORADBE s e e e e et e e e
Ox555555550280 O(Ox0000000000000060 IXEOOOAOOOOAOBORED e e
0x555555559290 0x0000000000000000 <-- fastbins[0x20][5]
Ox5555555592a0
0x5555555592b0
Ox5555555592c0
0x5555555592d0
Ox5555555592e0
Ox55555555920
Ox555555559300
Ox555555559310
Ox555555559320 ) % 555 ~Tag ) % e
0x555555559330 0x0000000000000000 <-- fastbins[0x20][0]
Bx555555559340
Ox555555559350 BxEEEEEEEBEEE2ZEBchb1I @0 ... iiiiaaaas <-— Top chunk

p/x main_arena.fastbinsY[0]
$3 = O0x555555559330

fastbins

________________ <-- fastbins[0x20][4]
<-- fastbins[@0x20][3]
................ <-- fastbins[@x20][2]

________________ <-- fastbins[@0x26][1]

/4



® Unsortedbin

Non-fast-sized chunks that don’t border the top will be
placed into the unsortedbin, a doubly-linked circular
freelist. Next time malloc is called, the unsortedbin will
be searched for a chunk that is serviceable. During
iteration it will sort chunks it comes across into the
smallbins or largebins, it will only sort up until an
allocation is found. Its first two qwords of user data
contain an fd and bk respectively. Adummy chunk is also
linked into the main_arena. Since chunks are
consistently unlinked from the unsortedbin, unsortedbin
metadata can be targeted in unlinking attacks. If no exact
sized chunk exists after a search, the last remaining
closest fit chunk will be remaindered.

https://azeria-labs.com/heap-exploitation-part-2-glibc-heap-free-

bins/

ANY CHUNK SIZE

UNSORTED BIN

|

PREV_SIZES

SIZE= 88

FD

BK

DATA

PREV_SIZES

SIZE=1008

FD

BK

DATA

PREV_SIZES

SIZE = 48

FD

BK

DATA

- .

/4



® Tcache (>2.26)

- Why the tcache

- What is the tcache
- How does the
tcache work

- Security risks

In a lot of scenarios,
the presence of the
tcache can make
exploitation

easier!

0x602030
0x602040
0x602050
0x602060
0x602070
0x602080
0x602090
Ox6020a0
0x6020b0
0x6020c0
0x6020d0
0x6020e0
0x6020f0
0x602100
0x602110
0x602120
0x602130
0x602140
0x602150
0x602160
0x602170
0x602180
0x602190
0x6021a0
0x6021b0
0x6021cO
0x6021d0
0x6021e0
0x6021f0
0x602200
0x602210
0x602220
0x602230
0x602240
0x602250
0x602260
Ox602270

count[0x20]

entries[0x20]



® Techniques

Some of the first heap exploitation
techniques were in the malloc
maleficarum. For every libc version,
people have been discovering new
techniques that utilize corruption on the
heap to modify stuff such as metadata or
important glibc structures.

https://github.com/shellphish/how2heap

https://0x434b.dev/overview-of-glibc-
heap-exploitation-techniques

Exercise

Because of the nature of how ptmalloc
stores data, even small, off-by-one
vulnerabilities can be leveraged to gain
full code execution.

Imagine you have a single null byte
overflow into an adjacent chunk, how
could you utilize this to achieve an
arbitrary write?

/4


https://github.com/shellphish/how2heap
https://0x434b.dev/overview-of-glibc-heap-exploitation-techniques

® GLIBC Mitigations

>

Many of these

ax7ffff7ca6afc
ax7ffff7co6afc
Ox7ffff7c969fc
OxTffff7c42476
OxTffff7c287f3
OxT7ffff7c89676
Ox7ffff7cabefe

pthread_kill+300
pthread_kill+300
pthread_kill+300
raise+22
abort+211

__Llibc_message+662

= U WMo

techniques have been
partly or fully —r

=do_abort, =0x7ffff7ddbb77 "%s\n") at .
155 ../sysdeps/posix/1libc_fatal.c: No such file or directory.
. . . context stack
mitigated with checks o ST ) coe 1 e 1 e 1 o
pO:0000( rsp IxTFFfffffbfa® — Ox7ffff7dded2® «- 'malloc(): unaligned tcache chunk detected'
pl:0008|-0f8 IxTFFfffffbfag8 «— 0x29 /x ')' x/
a n asse rts B2:0010(-0f0 IxTTFfffffbfbd — @x7ffff7ddbb79 «— 6
03:0018|-0e8 IxTFEFFfFfbfb8 «— Bx1
04:0020| rbx rl2 Ox7FFFFfffbfco «— 0x27 /x "' x/ G g ) EIRS A f ] I o\ S
IxTfffffffbfecd «+— 0x3e996c997fb29700

implemented in =
different glibc versions. :
If you encounter a
mitigation, the best
way to learn what its
doingis to read the

source.

IXTFFfffffbfd8 «— Ox1

Other utility functions such

calloc (zeros out returned
chunks) behave slightly
different but all implement
int_malloc the same. Not all
mitigations are full proof.

as realloc (resize chunks) and

XTFFEFFFFOFO — OxTFFFFTddbb79 «— ¢

e-=next = PROTECT PTR (&e-=next, tcache-=entriesltc_idx]);
tcache->entries[tc_idx] = e;
++(tcache->counts[tc idx]);



Challenge

The earlier provided demo binary as discussed is
vulnerable to a read and write after free. The goal
of this challenge is to exploit the demo binary
using the provided python template to drop a
shell. There are 2 ways (and possibly more) you
can achieve this.

Hint: If you get stuck, try researching the “safe
linking” mitigation introduced in glibc 2.32.

Download challenge binary and template solve
https://faultpoint.com/assets/filebin/malloc demo

https://faultpoint.com/assets/filebin/template.py

/4


https://faultpoint.com/assets/filebin/malloc_demo
https://faultpoint.com/assets/filebin/template.py

® Resources

https://github.com/shellphish/how2heap (Shellphish how2heap)
https://azeria-labs.com/heap-exploitation-part-1-understanding-the-glibc-heap-implementation/ (Azeria labs)
https://guyinatuxedo.github.io/25-heap/index.htm! (Nightmare)

https://www.youtube.com/watch?v=6-Et7TM7qgJJg (Max Kamper’s Introduction to Glibc Heap Exploitation presentation)
https://www.udemy.com/course/linux-heap-exploitation-part-1/ (HeapLab, not free)

There are also some heap challenges you can practice with on TCTF.

Questions?

/4


https://github.com/shellphish/how2heap
https://azeria-labs.com/heap-exploitation-part-1-understanding-the-glibc-heap-implementation/
https://guyinatuxedo.github.io/25-heap/index.html
https://www.youtube.com/watch?v=6-Et7M7qJJg
https://www.udemy.com/course/linux-heap-exploitation-part-1/

