
elbee



Glibc is derived from pthreads malloc (ptmalloc)

malloc(size) – Returns a pointer to the newly 
allocated chunk on the heap.
free(ptr) – Frees a chunk from allocation and 
returns it to the heap manager for future 
allocation.

Different threads have different heaps and their 
own arenas. We’re mostly dealing with the main 
arena. Arenas store heap metadata used by 
malloc and free to service requests. (e.g. Heads of 
free lists, maximum serviceable request size, etc) 
The main arena is located in the libc section.

https://azeria-labs.com/heap-exploitation-part-1-understanding-
the-glibc-heap-implementation/



Chunks are sized to the nearest 8-byte aligned serviceable size. Heap chunks have 
metadata in them used by malloc and free when servicing future requests. Freeing a 
chunk does not delete it, it just modifies the chunk to prepare it for future allocation in 
the event it meets a request.



Freebins are linked lists of freed chunks. Depending on the chunk, it will be stored in its 
corresponding list: the tcache, fastbins or unsortedbin (where the chunk is further sorted 
into the smallbin or largebin by malloc). If a chunk is not a fast or tcache chunk and an 
adjacent chunk is also free (prev_inuse) the chunks may be consolidated, this is also true 
with the top chunk. The head of a bin is stored in the arena and linked members are 
stored inline in the freed chunk in its first two qwords of user data.





Materials can be found at
https://faultpoint.com/assets/filebin/malloc_demo.c
https://faultpoint.com/assets/filebin/malloc_demo
https://faultpoint.com/assets/filebin/template.py

https://faultpoint.com/assets/filebin/malloc_demo.c
https://faultpoint.com/assets/filebin/malloc_demo
https://faultpoint.com/assets/filebin/template.py


The fastbins are a singly linked freelist that stores chunks of sizes 0x20 to 0xb0. It is singly linked so only 
the first qword of user data is utilized as an fd. Malloc has a fast size integrity check when allocating from 
these bins (more on glibc exploit mitigations later). Chunks that are fast-sized will be put into the 
corresponding fastbin depending on if the tcache is disabled or the corresponding tcache entry is full.



Non-fast-sized chunks that don’t border the top will be 
placed into the unsortedbin, a doubly-linked circular 
freelist. Next time malloc is called, the unsortedbin will 
be searched for a chunk that is serviceable. During 
iteration it will sort chunks it comes across into the 
smallbins or largebins, it will only sort up until an 
allocation is found. Its first two qwords of user data 
contain an fd and bk respectively. A dummy chunk is also 
linked into the main_arena. Since chunks are 
consistently unlinked from the unsortedbin, unsortedbin
metadata can be targeted in unlinking attacks. If no exact 
sized chunk exists after a search, the last remaining 
closest fit chunk will be remaindered.

https://azeria-labs.com/heap-exploitation-part-2-glibc-heap-free-
bins/



- Why the tcache
- What is the tcache
- How does the 
tcache work
- Security risks

In a lot of scenarios,
the presence of the
tcache can make
exploitation
easier!



Some of the first heap exploitation 
techniques were in the malloc 
maleficarum. For every libc version, 
people have been discovering new 
techniques that utilize corruption on the 
heap to modify stuff such as metadata or 
important glibc structures. 

https://github.com/shellphish/how2heap
https://0x434b.dev/overview-of-glibc-
heap-exploitation-techniques

Because of the nature of how ptmalloc
stores data, even small, off-by-one 
vulnerabilities can be leveraged to gain 
full code execution. 

Imagine you have a single null byte 
overflow into an adjacent chunk, how 
could you utilize this to achieve an 
arbitrary write?

https://github.com/shellphish/how2heap
https://0x434b.dev/overview-of-glibc-heap-exploitation-techniques


Many of these 
techniques have been 
partly or fully 
mitigated with checks 
and asserts 
implemented in 
different glibc versions. 
If you encounter a 
mitigation, the best 
way to learn what its 
doing is to read the 
source.

Other utility functions such 
as realloc (resize chunks) and 
calloc (zeros out returned 
chunks) behave slightly 
different but all implement 
int_malloc the same. Not all 
mitigations are full proof.



Download challenge binary and template solve
https://faultpoint.com/assets/filebin/malloc_demo
https://faultpoint.com/assets/filebin/template.py

The earlier provided demo binary as discussed is 
vulnerable to a read and write after free. The goal 

of this challenge is to exploit the demo binary 
using the provided python template to drop a 

shell. There are 2 ways (and possibly more) you 
can achieve this.

Hint: If you get stuck, try researching the “safe 
linking” mitigation introduced in glibc 2.32.

https://faultpoint.com/assets/filebin/malloc_demo
https://faultpoint.com/assets/filebin/template.py


https://github.com/shellphish/how2heap (Shellphish how2heap)
https://azeria-labs.com/heap-exploitation-part-1-understanding-the-glibc-heap-implementation/ (Azeria labs)
https://guyinatuxedo.github.io/25-heap/index.html (Nightmare)
https://www.youtube.com/watch?v=6-Et7M7qJJg (Max Kamper’s Introduction to Glibc Heap Exploitation presentation)
https://www.udemy.com/course/linux-heap-exploitation-part-1/ (HeapLab, not free)
There are also some heap challenges you can practice with on TCTF.

https://github.com/shellphish/how2heap
https://azeria-labs.com/heap-exploitation-part-1-understanding-the-glibc-heap-implementation/
https://guyinatuxedo.github.io/25-heap/index.html
https://www.youtube.com/watch?v=6-Et7M7qJJg
https://www.udemy.com/course/linux-heap-exploitation-part-1/

